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New Collective Modes of Interaction Nature 
in Inhomogeneous Ising Networks 
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We propose a vertex formulation of the Ising model with inhomogeneous 
external field on multiconnected networks possessing a superbond structure. The 
related technique based on gauge degrees of freedom enables us to recognize 
new collective modes of interaction nature, which provide an exact solution of 
the inverse profile problem and an explicit form of a local free-energy functional 
on an extended magnetization-mode space. Application is made to a square 
strip. 
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1. I N T R O D U C T I O N  

Analysis  of simplified mode l  systems with a cer ta in  degree of spat ia l  var ia-  
t ion of mode l  pa rame te r s  (1'2) provides  useful in fo rmat ion  abou t  the role of 
i nhomogene i ty  in the rmal  equi l ibr ium.  In par t icu lar ,  the free-energy func- 
t ional  fo rmat  turns  out  to be a powerful  ins t rument  in detect ing the role 
of  local i ty  and  non loca l i ty  in topo log ica l ly  significant exact ly  solvable  
examples.  The  comple te  so lu t ion  of the inverse fo rmula t ion  of  classical 1D 
lat t ice gases (3'4) was la ter  recognized as a pa r t i cu la r  case of avai lable  
inverse profiles for s imply connec ted  lattices,  including the Bethe lattice.(5 7) 
A l though  the local i ty  is b roken  for 1D Ising models  with per iod ic  bound-  
ary  condi t ions ,  the existence of a topo log ica l  collective mode  permi ts  the 

cons t ruc t ion  of a local  free-energy funct ional  on  an ex tended  space of site 
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magnetizations and collective amplitudes. (8~ The formalism of topological 
collective modes becomes substantially more laborious when generalizing 
the 1D periodic lattice to the simplest networks. (9) The entropy functional 
format (l~ avoids, in certain restricted aspects, the problems associated 
with the nonsimple connectivity of the lattice structure. 

The aim of this work is to overcome serious technical and conceptual 
problems in the theory of topological collective modes. The paper is based 
on a vertex representation of inhomogeneous Ising models and especially 
on a related gauge technique which is used to reduce substantially the effec- 
tive number of microscopic states. We first treat the one-loop Ising network 
and find an intimate relationship between the structure of its free-energy 
functional and the implicit representation of the topological collective 
mode in the inhomogeneous regime. This relationship turns out to be 
of primary importance when we pass to more complicated many-loop 
networks with superbond structure. Together with the introduction of a 
new class of collective modes of interaction nature, it provides a simple 
"nearest-neighbor" form of the free-energy functional on the extended 
magnetization-mode space. The nonlocality is mirrored by a few collective 
modes of topological and interaction nature, determined by the stationarity 
of the free-energy functional. Application is made to a quasi-2D square 
ladder. 

2. VERTEX F O R M U L A T I O N  OF THE O N E - L O O P  ISING M O D E L  

2.1. Local S t ruc ture  

We consider a one-dimensional closed chain, i.e., a ring, of Ising spins 
{ax}, x =  1,..., N, with constant nearest-neighbor coupling J and in a 
varying field hx (we set 1/kT to unity). In order to map the system onto a 
vertex model, we decorate each edge of the chain by a new vertex and attach 
to the resulting edge fragments the ordinary state variables a e { + , -  } 
(see Fig. 1). With each vertex of the original chain we associate a vertex 
weight vx(a, a') = exp(hxa) 6~,. Then, the admissible vertex configurations 
with both incident edges in the same + / -  state are identified with the 
up/down state of the spin located at the corresponding site. To reflect 
the nearest-neighbor two-spin interactions, we attach to decorating sites 
the weight matrix with elements E(a, a ')=exp(J~ra').  The statistical sum 
of the resulting system, defined by Z=Z~,~ , /17 I  (weights), is evidently 
identical to that of the Ising model. Let us express each E-matrix as a 
product of two pair-dependent matrices, explicitly; for sites x, x + 1 we set 

E = MT(gx.x + 1, gx+ 1.x) M(gx+ l,x, gx, x+ 1) (2.1) 
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Fig. 1. A fragment of the Ising chain: {a) in the vertex representation with decorated bonds; 
(b) in the purely vertex representation. 

Here, M is the invertible matrix parametrized by 

1 (bgx ,  y + a  agx, e + b ~  {2.2) 
M(gx, y, g , , x ) -  (1 + gx,-y - ,,/2 - b gy, x J \ agy, x bgy,.~ - a / 

(gx, ygy,  x # - 1 )  with a 2 + b  2 =exp(J )  and 2 a b - e x p ( - J ) .  The columns 
(rows) of the matrix are indexed from left to right (from up to down) as 
+ ,  - and the indices in parameters gx.y indicate the corresponding bond 
as well as nearest-neighbor orientation. Grouping the couples of matrices 
M attached to an arbitrary original lattice node into new weights, we omit 
the decorating nodes and obtain the vertex model formulated on the 
original lattice with the following site-dependent vertex weights: 

wx(~, or')= ~ M ~ , , ( g  . . . .  1, g x - , , x ) M ~ , ~ , , ( g x ,  x + l ,  g x + , , x ) e x p ( h ~ " )  

(2.3) 

The parameters g play the role of the free gauge parameters leaving the 
partition function of the system invariant. (12<4) 

Let us take advantage of the gauge degrees of freedom to eliminate 
substantially the number of microscopic states. With this aim, we nullify 
off-diagonal vertex weights at each site x, 

wx(+, - ) = 0  

Using the notation 

wx(-, +)=0 
(2 .4a)  

(2.4b) 

_ agx, y - b  (2.5b) 
Gx' Y - a - bgx, y 

a + bgx, y (2.5a) 
Gx+y - agx, y + b 
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we can write conditions (2.4a), (2.4b) in the form 

exp(_Zhx) - + (G;+~,x~, - G ~ : , x  1Gx+x+l ~ 6=- +1 (2.6) 
\Gx, x+~] 

indicating the one-site character of the direction-independent ratios 
G2+~,x/Gx+~+ ~. Since every edge provides a pair of gauge parameters, (2.6) 
determines unambiguously {gx, y} as functions of {h~}. It is easy to show 
that the nonzero diagonal vertex weights w~(+, + )  and w ~ ( - , - ) ,  
determined by (2.3), (2.6) satisfy the relations 

Wx( "k, -k- ) Wx( - - ,  --  ) = (e 2J -- e -2J )  (2.7a) 

w ~ ( - , - )  ( a - b g x _ l , x ) ( a - b g : ~ + l , x ) ( ~ )  
(2.7b) +, + ) -  + i + 

Having imposed a strictly diagonal form of local vertex weights, only 
two "macroscopic" states--with all edges in either ( + )  or ( - )  state--are 
allowed. The calculation of statistical quantities is then rather trivial. The 
statistical sum is evidently given by 

Z = I - I  w~(+, + ) + [ I  w~( - ,  - )  (2.8) 
X X 

The magnetization at a given site x, mx, can be calculated in terms 
of the statistical sum with modified Ising-like vertex weight at site x, 
vx ~ ~x(a, a') = a exp(hxa) 6~,, implying 

r ~ ( a , a ' ) =  ~ Mo~,,(g . . . .  ~, gx-~,~)M,~,~,,(g~,~+l, g~+l,x) a" exp(hxa") 

(2.9) 

and the ordinary statistical sum (2.8). The admissible ( + )  and ( - )  lattice 
edge configurations contribute elements ~ ( + ,  + ) and # ~ ( - ,  - ) ,  respec- 
tively. Using the independence of G~+~,x/Gx+:,+~ on the nearest-neighbor 
direction 6 = +1, we find 

~ A + ,  +)  
wx(+, + )  

�9 x ( - ,  - )  

Wx( - - ,  -- 

and immediately arrive at 

mx = x / C  

1 - G~+ ~,x/Gx+x + ~ (2. lOa) 
1 +  - + Gx+~,x/Gx.x+~ 

~x(+, +) (2.10b) 
wx(+, + )  

1 - cx + ~,x/ax+x + ~) (2.1 la) 
Gx+~,x/G .... + J  
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with 

~-C~[~y Wy('7t-' -~ )-I~Wy(-'.v --)l/[~y Wy('Jf-' Af- )-}-E'FVY(--'y --)1 
(2.11b) 

These relations confirm the expected one-site dependence of the ratios 
- -  + 

Gx+Ax/Gx.x+6, 

G~-+ 6,x _ _ ~ - mx (2.12) 
G + x,x+6 x / -C+mx 

Equation (2.11a) provides a direct solution of the inverse problem, i.e., 
finding hx as a function of the magnetization profile. For one bond, say 
between sites x and x + 1, the boundary magnetizations mx and mx+l can 
be expressed in terms of the same pair of gauge parameters g~,x+l and 

+ + 
g~+ 1,x contained in the auxiliary variables G;,x+ 1 and Gx+ 1,~ consequently 
yielding the explicit form of g~,x+l and gx+l.x as local functions of the 
magnetizations {mx, m~+ 1}. In particular, e.g., for G~+y one gets 

x/-C q- m x 
+ - (2.13a) 

G~, y - G, y(J) + I -t2, y(J) - m~ + C] 1/2 

G, y(J) = cosh(2J) m~ - sinh(2J) my (2.13b) 

Having determined the magnetization dependence of the gauge parameters, 
we return to formula (2.6) and obtain, with the aid of Eqs. (2.12), (2.13a), 
and (2.13b), the local profile equation for the applied field, 

h~ _ � 8 9 1 8 9  2 = [G,~+ 1(J) - m2 + C] 1/2} 

2 2 (2.14) + �89 in { t . . . .  1 (J) + [ tx,~:-l(J) - m~ + C] 1/2 } 

The nonlocal collective mode C reflects the global character of the 
magnetization profile due to chain closing, which manifests itself as a 

magnetization rescaling by the factor 1/x/-C. Taking into account (2.7a), 
(2.8), and (2.11b), it can be expressed as 

1 4 (e2e_ e-2J)N C =  - ~ 5  (2.15) 

2.2. Free Energy 

For fixed C, the inverse relation (2.14) possesses the integrability 
property Ohx/dmy I c = C3hy/cVmx I c, w hich(8'9} guarantees the existence of a 
free-energy functional F on the extended {m, C} space such that 

822/73/1-2-16 
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3 
hx = ~ F[m, C] (2.16a) 

0 = ~ F [ m ,  C] (2.16b) 
C ~ C(m) 

Within the proposed formalism it is possible to introduce naturally the 
quantity conjugate to the collective mode C (more precisely, to x/~). First, 
let us study how the above mechanism manifests itself in the direct calcula- 
tion of rn x -- 0 in Z/Shx. A straightforward calculation using formula (2.3) 
shows that besides the gauge invariance of Z as a whole, there holds for its 
separate parts 

8 
Ogx, y ~ I  z Wz(+ , + ) = 0  (2.17a) 

Hz w~(-,  - ) = 0 (2.17b) 
g g x .  y 

This fact permits us to obtain explicitly the derivatives 

g O w y ( + , + ) =  ~ Wy(+ + ) # x ( +  +)  (2.18a) 
Ohx ' ' yv~x 

a ~ wy(- ,  - ) = I-I Wy(-, - ) wx(- ,  - ) (2.18b) 
3hx y ~ x  

and so arrive at the final formula for mx (2.11). In the spirit of the 
vertex approach, we now define the variable ~b which controls the 
polarity of the circuit: l-L, wx( +, + ) ~ e ~ ~ wx( +, + ), I-Ix Wx( - ,  - ) --* 
e -~ I-Ix Wx( - ,  - ). The logarithm of the corresponding statistical sum 

Z ( h , ( ~ ) = e ~ [ I w x ( + ,  + ) + e - ~ [ I w x (  - ,  - )  (2.19) 
x x 

is the generating function for magnetization mx = ~9 In Z(h, (~)/Shx, which, 
owing to (2.18a) and (2.18b), takes the form of (2.11a) with 

[e ~ 1-Iy wy( +, + ) - e - ~  F l y  Wy( --, - -  )1 
x/C -- (2.20) 

Ee~ I-Iy Wy( +, + )Te--B I~y w y ( _ ,  Z~ 
Since w/-C= a In Z(h, ~b)/a~b, ~b is the conjugate quantity of x/~. According 
to (2.20), it satisfies the relation 

= -in (11 + + In [-Wx(-' + } ]  Lwx(+, (2.21, 
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Inverse relation (2.21) is of interest not only in a potential non- 
equilibrium description (~b~0) of a finite Ising ring, but also in the 
equilibrium conditions (~b=0) where it provides, using (2.7b) and the 
results for gx, y, an implicit form of C as a function of magnetizations: 

In -~----~ = ~ l n ( C - m ~ ) -  2 In 2~,~+1(J, C) (2.22a) 
x ( x , x + l )  

where the bond quantity 2x, x+~, given by 

1 
2 .... + l(J, C) = sinh(2J) {C cosh(2J)-  mxmx+ 1 sinh(2J) 

+xf~- 2 2 + C ] m  } (2.22b) [tx, x + l ( J ) - m ~  

is a symmetric function of neighboring magnetizations mx, m~+~ [see the 
definition of tx, y, (2.13b)]. After lengthy algebra it can then be shown that 
the free-energy functional on the extended {m, C} space, defined via 
(2.16a) and the inverse relation (2.14), takes the form 

+--~-- ~ l n ( C - m ~ ) -  ~ ln2~,~+~(J,C) + f ( C )  
x x ( x , x + l )  

(2.23) 

where f ( C )  is an as-yet-undetermined function of the collective mode, 
ensuring the stationarity condition (2.16b). The striking correspondence 
between the rhs of Eq. (2.22a) and the term in the square brackets in 
Eq. (2.23) permits to us specify f ( C )  immediately by taking into account 
the fact that F[m, C] satisfying (2,16) is related to the ordinary free-energy 
functional F [m]  by (8'9) Fire, C(m)] = F[m].  Since 

F[m]  = ~ mxh x - In Z 
x 

= ~ rnxh ~ + �89 In(1 - C) + const (2.24) 
x 

we readily get 

f (C) = �89 + x ~ )  ln(1 + x/-C) + (1 -,~/-C) ln(1 - , / C ) ]  (2.25) 

The intimate relationship between the implicit representation of collective 
modes and the structure of the free-energy functional on the extended space 
in the inhomogeneous regime is of primary interest when formulating the 
functional theory in its variational form for more complicated structures. 
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3. MULTICONNECTED NETWORKS WITH 
SUPERBOND STRUCTURE 

3.1. Profile Equations 

The prototype for introducing the problems arising when one passes 
to more general structures is the many-loop case drawn in Fig. 2. Here, 
each channel e = 1,..., q, possessing N~ internal points xe (x = 1 ..... Na) ends 
at points A = 0 e  and B =  (N~ + 1)~, which thus become q-coordinated. In 
order to simplify the notation associated with channels, in what follows the 
summation Y'.x= means the sum over all internal points of the ctth channel 
(i.e., x = 1,..., N~), while the summation over nearest neighbors Y~<~,(x+ l/a> 
will include also pair contributions with adjacent sites A and B (i.e., 
x = 0  ..... N~). 

It is easy to find hx= inside the eth channel (x = 1,..., N~). Namely, we 
can introduce a superbond matrix S~ between sites A, B which reflects their 
effective interaction as well as effective field contributions at A and B 
induced by all channels/~ r e (Fig. 3a). We then proceed as in the one-loop 
case and arrive at the local inversion relation 

h x~, = 1 2 2 2 - ~ ln(C a - mxa ) + �89 ln{ tx~,(~ + 1)~(J) + [t~,(~+ 1):~(J) - -  m x + Ca] 1/2} 

2 2 + �89 ) + [txa,( x 1 ) a ( J ) - m x +  C~] m }  (3.1) 

The formula for collective mode (2.15) modifies slightly owing to the 
variation of interaction between A, B sites to 

4 (e2S_ e - 2 J ) N '  + 1 Det(S~) Ca=  1 -~ -5  (3.2) 

A B 

Nnq 
0~=q 

Fig. 2. The q-channel  network.  
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S~ 

oc 

a) b) 

Fig. 3. Two equivalent representations of the q-channel network when the c~th channel is the 
reference: (a)with the c~th channel composed of N~ nodes and the superbond S~; (b)with 
superbonds S~ and g~. 

The complication comes when studying the profile problem for sites 
A, B. We return to the ~th channel and concentrate on its superbond 
representation S~ with respect to A, B sites (Fig. 3b). Within the gauge 
technique it is easy to perform the diagonalization of the channel together 
with nodes A, B and then put back the edge matrices M, which results in 

M r (I-L~ Wx~( 
S~ = (gA, l~, gl~,A) 0 

• M(gB, N~, gN~,B) 

+ , + )  o ) 
H~ w~(-, - )  

(3.3) 

This superbond matrix induces an effective A-B pair interaction J~ and 
additional fields hi and hi  to sites A and B, respectively, defined by 

(exp(h]+h~+J~) exp(h]-h;-J~) "] 
S ~ = n l ~ / 2 \ e x p ( - h ~ + h ~ - J ~ )  e x p ( - h ~ - h ~ + J ~ ) ]  (3.4) 

We now intuitively suggest that the A-B effective interaction J~ is a 
relevant collective variable. Once this assumption has been accepted, 
comparing Eqs. (3.3) and (3.4) and using the gauge formalism developed 
in the previous section [mainly Eq.(2.12) applied to G~-~,A/GA+j~, 

- -  + + + GN~,JGB.N~ ~ and the explicit results (2.13a), (2.13b) for GA, I~, Gs, u~] , we 
first express, from the relation determining J~, the quantity 

(a- bg~'A)(a- bg:v~'B) ~ Iwx~(-' - )1 
(agA,,~+b)(ags, u~+b) w-~(~(+, ~i 
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as a function of {J~, C=, mA, mB} and then consider this dependence in the 
relations for hi ,  h~. The algebra yields 

n~ = (e 2J -  e 2J)x~+ i/(e2S, _ e-ZJ~) (3.5a) 

0r - -  2 ha -- �89 { t AB( J~) + [t2e(J~)--m~ + C=] ~/2 } 

--ln{tA.l~(J) + [t2,1~(J)--m ] + C~]m}) (3.5b) 

with a similar formula for h~ under the interchange A ~ B and 1~ ~ N~c~. 
Here tAe(J~) is the obvious generalization of definition (2.13b). The 
simplicity of the resulting relations is remarkable in that the effect of 
inhomogeneity inside the whole channel is now represented by only one 
parameter. Having specified all superbonds S~,..., Sq, the total effect of all 
spins between sites A and B is represented by superbond S (Fig. 4) given 
by 

S = ( g [ n ~ l / 2 {  exp ~2~ (h~ + h~ + J~) exp ~2~ (h~A-h~ - J=) 
(3.6) 

X ez \e  p E ~ ( - h A + h e - J ~ )  e x p E ~ ( - h ~ - h ~ + J ~ ) J  

Thus, our task reduces to the two-site inverse problem for nodes A, B with 
respective magnetizations rnA, m~ and in respective fields h A + ~  , h~a, 
he + Z~ h~, coupled by ~ J~. A straightforward solution takes the form 

ha = - - � 89189  ~/2} 

+ �89 2 (ln{tA, l~(J)+ [ t ] , ,~ ( J ) -  m2A + C~] '/z } 
cr 

2 -ln{GB(J~) + [tzae(J~) - mA + C~]~/2}) (3.7) 

A similar formula with interchange A ~ B and le ~ N~e holds for h e. It 
is clear that the integrability conditions c3hA/~m~ = ~h~/~3mA, c')h~/c3rne = 

S 1 

Sq 

A B S 

Fig, 4. The superbond representations of spins between sites A and B. 
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#hB/OmA are fulfilled: the terms on the rhs of (3.7) which express the 
dependence on magnetizations at sites 1, are simply the correct counter- 
parts of the corresponding terms in the inverse relations for h1~, while the 
remaining terms have either one-site character or describe the magnetiza- 
tion dependence of the "nearest-neighbor type" between sites A and B. We 
therefore conclude that {J~} are true collective modes. 

3.2. Structure of Free Energy 

Inversion relations (3.1), (3.7) imply the following form of the free- 
energy functional on the combined {m, J, C} space: 

Fire, 3, C] - - ~  ~'mx~,hx~+mAhA+mBhB 
x ~  

+ ~ - ~  [ ~  ln(C~-  m2~) - ~ ln2x=.(x+l~(J,C~) 
( x~ , ( x+  1)~) 

In 2AB(J~, C,)]  + f ( a ,  C) (3.8) + 

with the obvious extension of the definition of 2, (2.22b). In order to deter- 
minef(J ,  C), we have to find the relationship between Fire, J, C] and the 
implicit representation of collective modes. Let us note that the collective 
mode Ca can be represented implicitly by a counterpart of (2.22a) in two 
ways: (I)in the ordinary picture with the ~th channel composed of N~ 
nodes and the superbond g,  (Fig. 3a); (II) in the purely superbond picture 
with superbonds S, and g, (Fig. 3b). For the case (I) we have 

+ 
= ~ ln(C~ 2 - m x ~  ) + l n ( C ~  - m ] )  + l n ( C ~  - m 2) 

x ~  

- ~ ln2:,~,(x+l)~(J,C~)-ln2A~(~J~,C~) 
(x~, (x+ 1)~) b' 

(3.9) 

while for the case (II) the implicit representation of Ca reads 

l n ( i  +~/=ln(C=-m~)+ln(C~-m~) 

(3.10) 
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Subtraction of (3.9) and (3.10) cancels the "unwanted" terms and results in 
the equality 

E 2 ln(C~-mx~)- ~ ln2x~,(:~+I)~(J,C~)+ln2AB(J~,C~)=O (3.11) x~ (x~,(x+ 1)~) 

From the two-site picture (Fig. 4) with superbond S, (3.6), one gets after 
some algebra 

=�89 (3.12) 

Finally, taking into account the equality 

Fire, J(m), C(m)] = ~ ~mx~hx~+mAhA+mBh~--lnZ (3.13) 
X ~  

and combining Eqs. (3.8), (3.11), and (3.12), we arrive at 

f(& C)=�89 (3.14) 

The free-energy functional (3.8) withf(J,  C) given by (3.14) determines the 
inhomogeneous external field and collective variables through 

0FErn, J, C] 
hx - (3.15a) ~3mx 

0 -  ~3F[m,~jJ, C] J=J(m),C~C(m) (3.15b) 

0 - 0F[m,oc J' C] J=J(m).C=C(m) (3.15C) 

We notice that there exists a relationship among the collective modes. 
Within the superbond formalism we have 

Det(S~':(SI na)[exp(~ 2J~)-exp(-~ 2J~)] 

and, consequently, Eq. (3.2) can be written as 

C~ = 1 - Co e x p ( ~  ~ 2Jp ) -  e x p ( - Z ~  2Ja) (3.16a) 
I-[, ~ ~ [exp(2J,) - exp( - 2J,)] 
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(a = 1 ..... q) with Co defined by 

4 e 2J)N:~ + l 
Co = ~ 5  I-[ ( e~g -- (3.16b) 

Using Eqs. (3.16a) and (3.16b), we can reduce the number of collective 
modes, e.g., by restricting ourselves to "interaction" collective modes {J} 
and to Co related directly to the partition function. Since J~ is easily 
expressible, using the superbond representation (3.3), as a function of the 
magnetization profile inside the ath channel and of the Ca-mode, this 
suggests an alternative construction of the ordinary free-energy functional 
Fire]  with a complete set of equations determining collective modes. We 
consider the formalism of the free-energy functional on the extended space 
more simple and efficient, so we will not discuss this alternative. 

4. GENERALIZATION 

The proposed procedure for finding the free-energy functional on the 
extended space is applicable to an arbitrary structure which can be trans- 
formed by a successive reduction via superbonds into an exactly solvable 
case. Two examples of this kind--the ring with a superbond hierarchy and 
the ladder strip--are presented in Fig. 5. The elimination of a superbond 
(with collective variables {C~,J~} introduced for each of its channels) 
induces an effective interaction ~ J~ and field contributions of type (3.5b) 
for the pair of edge sites of the superbond and provides an explicit inverse 
relation for internal sites. We observe that internal sites at a given level 

(a) 

AI B1 

A2 

A(N-1) 

AN 

C I 

Jl 

C2 

J2 

CN_ 1 

JN-1 

(b) 

B2 

B(N-1) 

BN 

Fig. 5. Two examples of exactly solvable inhomogeneous Ising networks with superbond 
structure: (a)the ring with a hierarchy of superbonds (we note that between the crossing 
points with coordination >2 there can be an arbitrary number of two-coordinated nodes); 
(b) the ladder strip. 
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may have had coordination number > 2  at a previous level, and therefore 
may have additional field contributions, as in (3.5b). We proceed in this 
way to a structure solvable by ordinary means, in our examples to a ring 
(Fig. 5a) and to a two-site lattice (Fig. 5b). The corresponding free-energy 
functional possesses a structure analogous to that presented in formula 
(3.8)--it is composed of one-site and symmetric "nearest-neighbor" con- 
tributions which are produced by the hierarchy of superbond elimination 
as well as by the exact solution of the final structure. To obtain the 
unknown function f ( J ,  C) it is necessary to consider, at each level of 
the superbond elimination, two possible representations (I) and (II) of the 
collective variables Ca introduced. In this way, we are able to derive iden- 
tities like (3.11) [the field contributions of type (3.5b) manifest themselves 
in the free-energy functional in such a way that the subtraction mechanism 
is automatically available] and express, using the results of the previous 
section, the terms given by the exact solution of the final structure through 
collective modes. 

To be more specific, we present briefly the explicit results for the 
square ladder (Fig. 5b). Let us eliminate successively the superbonds from 
up to down, introducing before every elimination a new pair of collective 
modes { Cx, Jx } as indicated in the figure. Observing that after the elimina- 
tion of sites Ax, Bx the total effective interaction between sites A(x + 1), 
B(x+ 1) is equal t o  (J+Jx), we readily find 

hal = - -  �89 ln(C1 - m21) + �89 ln{tA,,A2(J) + [t]l,AZ(J) -- mA ,2 + C1] 1/2} 

+ �89 ln{tAl,m(J) + [t21,~,(J) -- m21 + C~-] 1/2 } (4.1a) 

hA~ = - �89 ln(Cx - m]~) + �89 ln{tA~,Atx+ l)(J) 

+ [t~,A(x+i)(j) - 2 mA x + Cx ] 1/2 } 

+�89 Bx(J+jx_l)+ [t2x,~x(j+jx_l)_ 2 max+ Cx] 1/2 } 

+ �89 mx_l)(J)+ [t2Ax, A(x 1)(J) --m2xx+ Cx_l ]  1/2 } 

--}ln{tAx,~x(Jx 1)+ [t2xx,~x(Jx-i)--m2x+Cx-l]i/2} 

( x = 2  ..... N -  1) (4.1b) 

hAN= -- �89 ) + �89 SU(J+ Ju 1) 

+ [t]N, BN(J+ JN l)--m2N +1] '/2 } 

+ �89 ln{tAN, A(N-- 1)(J) + [t]N,A(N_ 1)(J) -- mZu + CN-1] x/2} 

--�89 BN(JN 1)--mAu2 +CN i-] 1/2 } (4.1C) 
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The corresponding free-energy functional reads 

F= ~ (mA~hAx + mBxhs~ ) 
x 

+ ~ l x/--~ {ln(Cx-mZx)+ln(Cx-m]~)-ln2Ax,~x+l~( J, C~) 
x = l  

- I n  2Bx.s(~+~)(J, C~)-ln 2A~,B~(J+J ~ ~, Cx) 

+ in 2A(~+ 1),B(x+ l ) ( Jx ,  Cx)} 
1 

+ ~ {ln(1 - mZu) + ln(1 -- mZx) -- in 2mv.Bu(J+ JN ,, 1)} + f ( J ,  C) 

(4.2) 

Here, Jo is identically equal to 0 and f ( J ,  C) has to be determined. By 
considering two possible implicit representations of the collective mode C~ 
at the xth level, we obtain 

ln(Cx - m2x) + ln(C~ - m2~) - In 2Ax, A(~ + l)(J, Cx) - In 2Bx, B(x + l)(J, Cx) 

- l n  2A~.B~(J+ J~_ ~, C~)+ln2A(x+~),s(~+~)(Jx, C ~ ) = 0  (4.3) 

Evaluating the prefactors of superbond matrices at every elimination level, 
we see that 

�89 - mAN) + l n ( l Z  _mBN)_ln)~AN, B N ( J + j N 2  1, 1)} 
N 1" 

=�89 ~ [ lns inh2(J+Jx) - lns inh2Jx]- lnZ+cons t  (4.4) 
X - - 1  

Finally, the equality 

F[m, J(m), C(m)]  = ~ (mAxhAx + m~xh~x) - In Z 
x 

implies the following form o f f ( J ,  C): 

N 1 

f ( J ,  C)- -  �89 ~ Eln sinh 2 J x - l n  sinh 2 ( J + J x ) ]  (4.5) 
x = l  

A similar procedure can be applied to the triangle strip, which is 
equivalent to the inhomogeneous Ising chain with N N  and N N N  two-spin 
interactions. 

It is to be noted that the external fields themselves can be considered, 
in principle and sometimes also in practice, as collective variables. Indeed, 
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putting h~=Hx, we find that the integrability conditions Ohx/Omy[n= 
Ohy/Om x [,q (=0) are fulfilled. The free-energy functional on the combined 
(m, H) space reads 

F[m, HI  = ~ m z H x  - In Z(hx = Hx) (4.6) 
x 

so that we have 

hx -- ~mx Fire, H], 0 = ~ x  F[m, HI  (4.7) 
H(m) 

This indicates a general criterion for choosing appropriate collective modes. 
For small lattices with complicated topological structure, the available 
explicit form of In Z as a function of {Hx} can make the formulation (4.6) 
the most appropriate one. For large lattices an explicit form of 
In Z(hx = Hx) is not at our disposal and so the application of collective 
modes of topological or interaction nature is inevitable. They substan- 
tionally decrease the number of variational parameters and/or make the 
free-energy functional expressible in a simple way. The latter feature is 
clearly seen in the case of the square ladder, where the formulation (4.6) is 
intractable, while the proposed combination of topological and interaction 
modes leads to a very simple form of the free-energy functional (4.2), (4.5) 
possessing formally the structure of the original model Hamiltonian. For 
more complicated lattices, {Hx} may be used as complementary collective 
variables and could help to solve some topological nontrivialities. 

5. C O N C L U S I O N  

The vertex formulation of the inhomogeneous Ising model enables us 
to pass from the local site-to-site recurrence approach to the formalism of 
interplaying chain fragments. The related technique of gauge parameters 
turns out to be a powerful method even in the relatively well-understood 
case of the closed Ising chain, for which it provides the natural introduc- 
tion of the quantity conjugate to the collective mode and the establishment 
of the close relationship between the implicit representation of the collec- 
tive mode and the structure of the free-energy functional on the extended 
magnetization-mode space in the inhomogeneous regime. For nontrivial 
generalization of the superbond type, we have found new interaction collec- 
tive modes which imply "integrable" profile equations and maintain the 
simple "nearest-neighbor" form of the free-energy functional on the 
extended space. The observed relationship between the structure of the free- 
energy functional and the possible implicit representation of collective 
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modes is of pr imary importance.  It confirms that there is a ha rmony  in 
the inverse t r ea tmen t - - the  extremely complicated nonlocal  effect of  
inhomogenei ty  and nonlineari ty is encompassed by a few collective modes 
whose dependence on the magnet izat ion profile can be generated, accord-  
ing to a variat ional  principle, f rom a simple free-energy functional. The 
simple form of the functional evokes the possibility of its construct ion for 
general structures by topological  rules, with a hierarchy of  collective modes 
of various kinds governing the statistics of  the system. Investigation as to 
whether such a simple picture is realistic is left for the future. 
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